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1 Formulation

Linearly Separable In a 2-dimensional space, separate the classes with the largest
margin by w.x + b = 0. For j-th instance, (w.x; +b) - y; is so-called ”confidence”, where
yj € {+1,—1}. Maximize the margin ~:

fmax, 7, subject to (w.x; 4+ b) - y; > 7,5 € Dataset

Where 2 - v is the margin between boundaries of two decision regions. Use Canonical
Hyperplanes, w.x* +b = +1 and x* = x~ + Aw, we have w.(x~ + A1) +b = +1. Solve

fIwll
the equalization: A\ = =+ and v = \/ﬁ Substitute: v = \/V%

[[wll

Primal:
f min,, , w.w, subject to (w.x; +b) - y; > 1,V;j € Dataset
Use Lagrange Multipliers a:
L(W,a) = iw.w — > ajl(w.x; + b)y; — 1], where a; > 0,V
Take the partial w.r.t. to w, o and solve the gradient:
1. g—fv =0=>w =73, a;y;z;
2. %:0:>Zjajyj:0
Dual: Substitute w with 3, a;y;x; and >, a;y; =0
fmaxgy Y ; o — %Zi,j ;0 Yy iXiX5, where C' > o > 0 ()

Nonzero «y, define the decision boundaries. The data points x; corresponding to nonzero
ay, are the support vectors, which gives b = yr, — w.xg

Soft Margin Usually, not all data points are perfectly separable. By adding slack
variables §;, and a penalty parameters C', an SVM classifier can use a soft margin. It
means the optimal hyperplane can separate many but not all data points. There will be
tradeoff between the choice of w and the number of mistakes along with corresponding
certain penalty.

fming p w.w + C' 32, &, subject to (w.xj +0) - y; > 1 —§&;, where {5 > 0,V

Using Lagrange Multipliers and taking gradient leads to dual formation (x) 5], As known,
the above is L'-norm. For L2-norm!”, it has the similar formula.



Not Linearly Separable If data is not linearly separable, an SVM classifier resorts
kernel function to perform nonlinear transformation so as to map input feature space S
to a higher-dimensional space: ¢(x) : S™ — F. However, the mapping could be com-
putationally intensive. For example, polynomial transformation (d=2) function ¢(x) :
{21, 22, sz} — {22, . 23, 201,y ooy T 1, ooy Ty, -1, ¢} Which is a (”'2"2) = (%)—
dimensional space. Relying on an essential observation that the algorithm only depends on
the inner product of feature vectors, kernel functions could be used to compute ¢(x;)-¢(x;)

on the original space as a kernel function has the following properties:
1. K(x,x;) can be cheaply computed in the original space S
2. K(xi,%5) = ¢(xi) - ¢(x;3).

Instead of explicitly transforming the data from original space to the new space, the inner
product of ¢(x) could be cheaply computed in the original space. This is called Kernel
Trick. The dual formula in terms of kernel function:

Tmax, Y, o — %Z” ooy K (x4, %5) , where K(x4,%;) = ¢(x3) - ¢(x;)

Four basic kernels:

e Polynomial of degree d: K (x;i,x;) = (xi’ x;)%

Polynomial of degree up to d: K (xj,x;) = (xi’ xj + ¢)¢, where ¢ > 0

Radial Basis Function (Gaussian) kernel: K (xj,X;) = exp (—M>
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Sigmoid: K (xi,x;) = tanh(nxIx; + )

2 Decision Function: f(x) = sign(w - ®(z) + b)

Solve dual formulation in the learning phase to obtain support vetoers . At classifica-
tion time: compute w - ®(z) = >, a;y; K(x,x3)) and b =y, — >, oy K (xk, Xi))
Question: should all training data x; be stored for future classification?

3 Discussion

1. Advantages: good generalization performance; automatic complexity control to re-
duce the overfitting; solve a variety problems with little tuning; a global optimum,
not affected by local minima; do not suffer from the curse of dimensionality!*

2. Hinge Loss: max(0,1 —y; >, waZ)

3. If slack variables have a large penalty C, will it affect the accuracy?

4 Further Reading

[1] http://en.wikipedia.org/wiki/Kernel _trick

[2] http://en.wikipedia.org/wiki/Support_vector_machine

[3] http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[4] http://en.wikipedia.org/wiki/Curse_of _dimensionality

[5] http://www.mathworks.com/help/stats/support-vector-machines-svm.html
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