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1 Formulation

Linearly Separable In a 2-dimensional space, separate the classes with the largest
margin by w.x + b = 0. For j-th instance, (w.xj + b) · yj is so-called ”confidence”, where
yj ∈ {+1,−1}. Maximize the margin γ:

†maxγ,w,b γ, subject to (w.xj + b) · yj ≥ γ,∀j ∈ Dataset

Where 2 · γ is the margin between boundaries of two decision regions. Use Canonical
Hyperplanes, w.x+ + b = +1 and x+ = x−+λw, we have w.(x−+λ w

‖w‖) + b = +1. Solve

the equalization: λ = 2
‖w‖ and γ = 1√

w.w
. Substitute: γ = 1√

w.w
:

Primal:

†minw,bw.w, subject to (w.xj + b) · yj ≥ 1, ∀j ∈ Dataset

Use Lagrange Multipliers α:

L(W,α) = 1
2w.w −

∑
j αj [(w.xj + b)yj − 1], where αj ≥ 0, ∀j

Take the partial w.r.t. to w, α and solve the gradient:

1. ∂L
∂w = 0⇒ w =

∑
j αjyjxj

2. ∂L
∂α = 0⇒

∑
j αjyj = 0

Dual: Substitute w with
∑
j αjyjxj and

∑
i αiyi = 0

†maxα
∑
i αi − 1

2

∑
i,j αiαjyiyjxixj, where C ≥ αi ≥ 0 (∗)

Nonzero αk define the decision boundaries. The data points xi corresponding to nonzero
αk are the support vectors, which gives b = yk −w.xk

Soft Margin Usually, not all data points are perfectly separable. By adding slack
variables ξj , and a penalty parameters C, an SVM classifier can use a soft margin. It
means the optimal hyperplane can separate many but not all data points. There will be
tradeoff between the choice of w and the number of mistakes along with corresponding
certain penalty.

†minw,bw.w + C
∑
j ξj , subject to (w.xj + b) · yj ≥ 1− ξj , where ξj ≥ 0,∀j

Using Lagrange Multipliers and taking gradient leads to dual formation (∗) [5]. As known,
the above is L1-norm. For L2-norm[5], it has the similar formula.
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Not Linearly Separable If data is not linearly separable, an SVM classifier resorts
kernel function to perform nonlinear transformation so as to map input feature space S
to a higher-dimensional space: φ(x) : Sn → F . However, the mapping could be com-
putationally intensive. For example, polynomial transformation (d=2) function φ(x) :

{x1, x2, ..., xn} → {x2n, ..., x21, xnxn−1, ..., xnx1, ..., xn, ...x1, c} which is a
(n+2

2

)
= (n

2+3n+2
2 )-

dimensional space. Relying on an essential observation that the algorithm only depends on
the inner product of feature vectors, kernel functions could be used to compute φ(xi)·φ(xj)
on the original space as a kernel function has the following properties:

1. K(xi,xj) can be cheaply computed in the original space S

2. K(xi,xj) = φ(xi) · φ(xj).

Instead of explicitly transforming the data from original space to the new space, the inner
product of φ(x) could be cheaply computed in the original space. This is called Kernel
Trick. The dual formula in terms of kernel function:

†maxα
∑
i αi − 1

2

∑
i,j αiαjyiyjK(xi,xj) , where K(xi,xj) = φ(xi) · φ(xj)

Four basic kernels:

• Polynomial of degree d: K(xi,xj) = (xi
Txj)

d

• Polynomial of degree up to d: K(xi,xj) = (xi
Txj + c)d, where c > 0

• Radial Basis Function (Gaussian) kernel: K(xi,xj) = exp
(
− ||xi−xj||

2σ2

)
• Sigmoid: K(xi,xj) = tanh(ηxT

i xj + γ)

2 Decision Function: f(x) = sign(w · Φ(x) + b)

Solve dual formulation in the learning phase to obtain support vetoers α. At classifica-
tion time: compute w · Φ(x) =

∑
i αiyiK(x,xi)) and b = yk −

∑
i αiyiK(xk,xi))

Question: should all training data xi be stored for future classification?

3 Discussion

1. Advantages: good generalization performance; automatic complexity control to re-
duce the overfitting; solve a variety problems with little tuning; a global optimum,
not affected by local minima; do not suffer from the curse of dimensionality[4]

2. Hinge Loss: max(0, 1− yj
∑
iwix

j
i )

3. If slack variables have a large penalty C, will it affect the accuracy?

4 Further Reading

[1] http://en.wikipedia.org/wiki/Kernel_trick
[2] http://en.wikipedia.org/wiki/Support_vector_machine
[3] http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[4] http://en.wikipedia.org/wiki/Curse_of_dimensionality
[5] http://www.mathworks.com/help/stats/support-vector-machines-svm.html
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